Application of Novel Clonal Algorithm in Multiobjective Optimization

نویسندگان

  • Jianyong Chen
  • Qiuzhen Lin
  • Qingbin Hu
چکیده

In this paper, a novel clonal algorithm applied in multiobjecitve optimization (NCMO) is presented, which is designed from the improvement of search operators, i.e. dynamic mutation probability, dynamic simulated binary crossover (D-SBX) operator and hybrid mutation operator combining with Gaussian and polynomial mutations (GP-HM) operator. The main notion of these approaches is to perform more coarse-grained search at initial stage in order to speed up the convergence toward the Pareto-optimal front. Once the solutions are getting close to the Pareto-optimal front, more fine-grained search is performed in order to reduce the gaps between the solutions and the Pareto-optimal front. Based on this purpose, a cooling schedule is adopted in these approaches, reducing the parameters gradually to a minimal threshold, the aim of which is to keep a desirable balance between fine-grained search and coarse-grained search. By this means, the exploratory capabilities of NCMO are enhanced. When compared with various stateof-the-art multiobjective optimization algorithms developed recently, simulation results show that NCMO has remarkable performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Methanol Synthesis Process by using a Novel Sorption-Enhanced Fluidized-bed Reactor, Part II: Multiobjective Optimization and Decision-making Method

In the first part (Part I) of this study, a novel fluidized bed reactor was modeled mathematically for methanol synthesis in the presence of in-situ water adsorbent named Sorption Enhanced Fluidized-bed Reactor (SE-FMR) is modeled, mathematically. Here, the non-dominated sorting genetic algorithm-II (NSGA-II) is applied for multi-objective optimization of this configuration. Inlet temperature o...

متن کامل

Multiobjective Optimization for the Forecasting Models on the Base of the Strictly Binary Trees

The optimization problem dealing with the development of the forecasting models on the base of strictly binary trees has been considered. The aim of paper is the comparative analysis of two optimization variants which are applied for the development of the forecasting models. Herewith the first optimization variant assumes the application of one quality indicator of the forecasting model named ...

متن کامل

An Improved Clonal Algorithm in Multiobjective Optimization

In this paper, we develop a novel clonal algorithm for multiobjective optimization (NCMO) which is improved from three approaches, i.e., dynamic mutation probability, dynamic simulated binary crossover (D-SBX) operator and hybrid mutation operator combining with Gaussian and polynomial mutations (GP-HM operator). Among them, the GP-HM operator is controlled by the dynamic mutation probability. ...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Information Technology and Decision Making

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010